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Abstract

This paper provides novel estimates of the causal effects of exposure to the opioid epi-
demic on educational progress for California students. I develop a new time-varying
instrument for prescription opioids derived from Purdue Pharma’s evolving marketing
strategy, which targeted areas with high rates of different diseases over time. Moving
from the 25th to the 75th percentile of instrumented opioids per capita, test scores fall
by 0.65–1.57% of the mean. High school exit exam pass rates fall by a greater mag-
nitude. Ninth- and tenth-grade dropout rates increase. Estimates from IV regressions
are larger in magnitude than those using OLS.
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1 Introduction

A large and robust literature has documented the devastating effects of the opioid epi-

demic on adult well-being (Maclean et al., 2020); a more recent and burgeoning literature

has explored some of the spillovers of the opioid epidemic on children (Brundage and Levine,

2019; Buckles, Evans, and Leiber, 2020). Existing quasi-experimental research indicates that

the opioid epidemic has hurt children along dimensions including birth outcomes and family

stability (Arteaga and Barone, 2022; Buckles, Evans, and Leiber, 2020). However, there is

still much we do not know about the effects of the opioid epidemic on children—particularly

the causal effect of the epidemic on human capital accumulation. This is an important omis-

sion, as the number of children in the United States living with an adult with opioid use

disorder grew by 30% between 2002 and 2017, from 423,000 to 548,000 (Bullinger and Wing,

2019). Shorter gestation inhibits fetal brain development, and family instability further lim-

its the ability of parents to invest in their children’s human capital development. We also

know that negative shocks to parental well-being have large effects both on their children’s

academic performance and on the academic performance of their children’s peers (Stevens

and Schaller, 2011; Ananat et al., 2013; Acton et al., 2023). Other factors that contribute

to community health have also been shown to affect educational outcomes (Bütikofer and

Salvanes, 2020; Daysal et al., 2024). These mechanisms provide reason to be concerned

about the effects of the opioid crisis on children’s academic achievement and attainment.

This paper provides novel estimates of the causal effects of exposure to the opioid epidemic

on educational progress for California students.

As prescription opioid use in a community is likely related to both observable and un-

observable factors that affect children’s human capital development, I use an instrumental

variable strategy to estimate the causal effect of community opioid use on education out-

comes. I use newly released documents from the UCSF Opioid Industry Documents Library

to construct a new time-varying instrument for prescription opioids that follows the changes

in marketing strategy described in internal Purdue Pharma documents.1 This newly pro-

1The UCSF Opioid Industry Documents Library launched in 2021 is funded in part by settlement funds
from public interest lawsuits against Purdue Pharma by state governments. As of February 2024, this library
contained 3,171,159 documents from the proceedings of the numerous lawsuits against Purdue Pharma and
other related entities in the pharmaceutical industry.
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posed instrument is motivated by marketing strategy documents released in response to a

lawsuit by the South Florida Sun Sentinel and Orlando Sentinel to make additional records

public. Although Purdue Pharma’s initial marketing strategy targeted oncologists, the 2000,

2001, and 2002 OxyContin Marketing Budget Plans all indicate a shift to potentially lu-

crative areas in the non-cancer pain market. In particular, these documents describe the

evolution of Purdue Pharma’s marketing strategy in the early 2000s to build on the mo-

mentum previously established with the targeting of oncologists through a redirection of

detailers to rheumatologists and other providers treating patients with osteoarthritis. In

order to identify the local markets where detailing would be more profitable, pharmaceutical

companies have used health data, both public and proprietary, to identify geographical vari-

ation in osteoarthritis prevalence and other health conditions over time. Knee replacement

surgery is a common procedure to treat osteoarthritis in the elderly. Thus, the interaction of

the 1990s cancer rates with contemporaneous knee replacements per capita provides a new

time-varying instrument for per capita prescription opioids via Purdue’s shifting marketing

strategy. This instrument for prescription opioids allows for the identification of the causal

effects of the opioid epidemic on educational outcomes.

This study builds on the work by Arteaga and Barone (2022), who first proposed using

cancer rates in the mid 1990s as an instrument for the growth of prescription opioids to

identify the effects of said growth on opioid mortality, SNAP usage, and birth outcomes.

This key paper in the opioids literature recognized that the pharmaceutical company Pur-

due Pharma, whose marketing strategy drove the early years of the opioid epidemic, initially

targeted areas with a high number of cancer patients. Purdue Pharma targeted these areas

because, in the late 1990s, the medical community was much more accepting of prescribing

opioids to cancer patients than to other patients with chronic pain. A limitation of using

1990s cancer rates as an instrument in the context of my study, however, is that this instru-

ment is time-invariant, precluding the use of county fixed effects, which could be important

if unobserved county characteristics that affect educational outcomes are correlated with the

instrument. My new instrument allows for identification without additional assumptions

regarding the sufficiency of conditioning on only observable variation across counties to meet

the exclusion restriction.2 This time-varying instrument has particular value in my context,

2The authors support their identification strategy by providing reduced form evidence that outcomes
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where local unobservable heterogeneity in education inputs captured by county fixed effects

may play an important role in determining outcomes.

Using newly aggregated and harmonized California education data pulled from the Way-

back Machine and other Internet sources, I find strong evidence that the opioid epidemic

in communities adversely affected educational progress for children on a wide range of test

scores and related outcomes. Moreover, these adverse effects are substantially underesti-

mated by OLS. Although the popular press has associated the opioid epidemic with poor

economic conditions, the majority of opioids are prescribed to employed people with private

health insurance and not to low-income people on Medicaid (Currie et al., 2019). Thus,

the relationship between community opioid use and educational outcomes in OLS regression

may be biased upward by higher employment rates among affected families and by other

positive factors contributing to private insurance use in a county.

Moving from the 25th to the 75th percentile of instrumented per capita prescription

opioids3, standardized test scores fall by 0.65% to 1.57% of the mean. High school exit

exam scores fall by a similar magnitude, and pass rates fall more dramatically by 3% to

4% percent of mean pass rates. The larger effect sizes found for pass rates suggest that the

opioid epidemic has been even more detrimental to the learning of students at the left tail

of the achievement distribution. I find no evidence of overall changes in dropout rates, but

ninth- and tenth-grade dropout rates increase, suggesting a shift toward students dropping

out earlier, conditional on dropping out of high school at all. The magnitude of effects I find

in California are comparable to the effect that Aizer et al. (2018) find for the test scores of

third graders in Rhode Island when serum lead increases from zero detectable lead to the

average level of detectable lead. These results are robust to alternate specifications, including

using Arteaga and Barone’s (2022) original instrument and using opioid hospitalization rates

instead of opioid shipment rates as the measure of community opioid use.

This paper highlights that the impact of the opioid epidemic on education is larger than

what has been documented by prior literature. Comparing with Cotti et al. (2020), who

provide the richest set of controls in the descriptive literature, the instrumental variable

followed similar trends in areas with high and low cancer rates prior to the introduction of Oxycontin;
but this approach also requires panel data spanning back into the early 1990s, which is unavailable for the
educational outcomes I study.

3The 25th and 75th percentile are measured across all years and counties in my sample.
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models in this paper find aggregate effects that are 20 to 40 percent larger, measured with

much more precision. These substantial negative impacts suggest direct effects on human

capital accumulation, which have important implications for long-run economic outcomes of

affected children. These estimates bridge a knowledge gap in the academic literature and

inform potential policy action to combat the intergenerational impacts of the epidemic.

2 Background and Conceptual Framework

Existing quasi-experimental studies have not looked at the effects of the opioid crisis

on education. Most of the existing economics literature studying the effects of the opioid

epidemic on children has relied on identification stemming from differences in state-level poli-

cies, which has limited the outcomes researchers can evaluate.4 Since nation-wide education

data are not available for years prior to 2009, which is nearly the peak of the second wave of

the opioid epidemic, effects of the opioid epidemic on educational outcomes are particularly

difficult to study using identification from state-level policies. One notable exception in the

literature that uses local variation in the intensity of the opioid epidemic to identify causal

effects of the opioid epidemic on children is the work of Evans, Harris, and Kessler (2022).

Evans, Harris, and Kessler (2022) use an identification strategy at the county level that

exploits the reformulation of OxyContin in 2010 as an exogenous shock to opioid users, and

they show that the reformulation of OxyContin actually increased child abuse and neglect as

addicts substituted away from prescription opioids and toward heroin. Yet the identification

strategy employed by Evans, Harris, and Kessler (2022) is limited to measuring the effects

of heroin use in the second wave of the opioid epidemic. I show that negative affects on

education began in the first wave of the opioid epidemic, which was characterized by the

abuse of prescription opioids.

Past work evaluating the relationship between the opioid epidemic and education has

primarily been descriptive. Darolia, Owen, and Tyler (2023) use this national test-score data

4Buckles, Evans, and Leiber (2020) exploit differences in state-level triplicate prescription pad programs
to estimate the causal effect of the opioid epidemic on children living away from parents and find that, had
the opioid epidemic not worsened after 1996, 1.5 million fewer children under the age of 17 would have been
living away from their parents in 2015. Bullinger and Ward (2021) study the effects of prescription drug
monitoring programs, Good Samaritan laws, pain clinic regulations, and naloxone access laws—all again at
the state level—on foster care entrance rates but find mixed results in terms of magnitude and direction
of effects. Gihleb, Giuntella, and Zhang (2019) and Evans, Harris, and Kessler (2022) study the effects of
mandatory prescription drug monitoring programs, but they find conflicting evidence with respect to the
effects of these programs on child abuse and neglect.
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from the Stanford Educational Data Archive (SEDA) from 2009 through 2014 to document

a negative relationship between a county’s drug-related mortality rate and standardized test

scores. Using the same data, Drescher and colleagues (2023) estimate a negative association

between community opioid prescribing and learning rates as measured by the linear grade

slope on average test scores. Cotti, Gordanier, and Ozturk (2020) use a longer panel from

South Carolina and also find a negative correlation between county-level opioid prescribing

and student test scores for white students. There are, however, important confounds that

weaken the relationship between opioids and adverse educational outcomes in descriptive

work. Because the majority of opioids are initially prescribed to employed people with

private health insurance (Currie et al., 2019), there is reason to believe that the relative

(initial) stability of many people addicted to opioids may obscure the negative impacts of

this drug use on their children. Thus, descriptive evaluations of the relationship between

the opioid epidemic and education may understate the magnitude of the problem, as these

communities may also have advantages with respect to investment in children’s education.

There are several mechanisms through which the opioid epidemic may adversely im-

pact human capital development. The economics literature has documented that the opioid

epidemic has increased non-marital births, reduced pregnancy duration, decreased Apgar

scores, increased the frequency with which children live with relatives other than their par-

ents, and ultimately increased foster care entry (Bullinger and Ward, 2019; Buckles et al.,

2022; Arteaga and Barone, 2022). Poor birth outcomes reflect reduced fetal brain devel-

opment, with lasting effects on IQ and educational attainment (Black et al., 2007). The

increase in foster care entry attributable to the opioid crisis also suggests parental opioid

use as an underlying cause of child abuse and neglect, which represent extreme forms of low

parental investment in children as another mechanism. Although the literature on the causal

effects of marginal foster care placement on child outcomes shows mixed results, the effects

of removal on educational outcomes are more clearly positive when parents of removed chil-

dren make sufficient improvements to their parenting skills to enable reunification—further

supporting the role of home environment in human capital acquisition (Gross and Baron,

2022).

Community-level factors such as the degradation of social cohesion and the diminishing

availability of community role models are more difficult to quantify, but descriptive and
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theoretical work from social work research suggests potentially large effects of community-

wide spillovers of the opioid epidemic on children and parents whose neighbors are affected by

addiction (Drescher et al., 2023). Neighborhoods with higher social cohesion have lower rates

of child neglect, which may suggest that neighbors sometimes make investments in children

beyond their own (Maguire-Jack and Showalter, 2016). When a child’s neighbors are affected

by opioid addiction, the capacity of the neighborhood to invest in the child’s development

is diminished. Further research provides evidence that community role models may shape

children’s attitudes toward education, with downstream consequences on children’s behavior

in school (Hurd et al., 2009). When more adults in a community suffer from addiction,

the availability of positive role models is reduced. Children who live with adults who are

addicted to opioids may also have negative peer effects in the classroom. This prediction is

in line with Carrell et al. (2018), who find that children’s learning is adversely impacted by

exposure to “disruptive peers” linked to domestic violence. Finally, there may be diversion of

resources to public health efforts to address addiction at the expense of education spending

and other programs benefiting children.5

While children with direct exposure to the opioid crisis through addicted family members

may be more negatively impacted, community-level opioid use is likely sufficient to worsen a

child’s environment. Because the measures of opioid use utilized in my analysis are measured

at the county-level, the effects I find reflect a combination of the effects of community-level

opioid use and the intent-to-treat effects of familial opioid use.

The predictions for differences in effects of the opioid crisis for younger versus older

children are ambiguous. On one hand, younger children are predicted to be more sensitive

to negative inputs when brain plasticity is the highest. On the other hand, past academic

achievement is part of the educational achievement production function, which implies that

the negative effects of the opioid epidemic could build across years. Aggregate changes in

adverse effects with student age will depend on the relative importance of brain plasticity

and the ability of students to build upon past learning. The relative importance of these

factors may also vary by school subject, as some areas of schooling are more dependent

on mastery of prior material in school. Reading at home is important for students’ verbal

skills, but opportunities to practice math at home are more limited (Guryan et al, 2014).

5See Darolia et al. (2023) for a more extensive discussion of these mechanisms.
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Considering the effects of pre-K as an early positive shock to academic achievement, Gormley

at al. (2017) find that Tulsa’s pre-K program initially had large positive impacts on language

skills, but, by seventh grade, only positive effects on math test scores remained. Past research

has also indicated that student response to school inputs are generally larger for math than

for language skills (Agüero et al, 20221; Clotfelter et al., 2007), providing an additional

mechanism for differential effects by age and subject as students cumulatively spend relatively

more time in school and less time with their families as they get older.

3 Data

3.1 Health and Demographic Data

Prescription opioid data come from the digitized records of the Automation of Reports

and Consolidated Orders System (ARCOS) of the Drug Enforcement Administration (DEA)

provided by Arteaga and Barone (2022). These include oxycodone, codeine, morphine,

fentanyl, hydrocodone, hydromorphone, and meperidine in morphine-equivalent milligrams.

The data are available at the 3-digit ZIP level, but I crosswalk these data to the county

level using Geocorr from the Missouri Census Data Center. ARCOS is a drug reporting

system that tracks the flow of prescription drugs that are regulated by the Drug Enforcement

Administration under the Controlled Substances Act. These drugs are monitored from the

point of manufacture to the point of distribution (U.S. DOJ).

Cancer mortality rates from 1994 to 2017 used in the main analysis come from the CDC

Wonder system, which reports mortality statistics at the county level.6 Cancer mortality

is defined as deaths with ICD-9 codes 140 through 239 and ICD-10 codes C00 through

D48 (Neoplasms). The CDC transitioned to the ICD-10 in 1999. Knee replacement data

for 1997 through 2015 come from the Dartmouth Atlas. Cross-sectional cancer rates at the

county level averaged over 1994 to 1996 and panel knee replacement rates at the year–county

level are used to construct my instrument for prescription opioids. Cancer rates after 1996

are used as controls. Additional mortality data used in robustness checks come from the

restricted-use National Vitals Statistic System (NVSS). These microdata include the deaths

of all individuals who died between 1992 and 2013 (inclusive) and include cause of death

6Cancer mortality at the county level occurs with high enough frequency that suppression rules are not
an issue, so I use CDC Wonder for convenience instead of deriving these variables from the restricted-use
National Vitals Statistic System.
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and county identifiers.

Opioid-related hospitalization data, which I use as an alternate measure of the intensity

of the opioid epidemic, come from two sources. For years 2006 through 2018, these measures

are reported on the California Overdose Surveillance Dashboard at the county level. For

years 2001 through 2005, I collapse the Public Patient Discharge Data from the California

Department of Health Care Access and Information. These data include all discharges from

California acute care hospitals. I define opioid-related hospitalizations in the same way as

the California Overdose Surveillance Dashboard. A hospitalization is included if either the

Principle Diagnosis Code is listed as one of ICD-9 codes 965.00, 965.01, 965.02, or 965.09,

or there is any listed external cause of injury with ICD-9 codes E850.0, E850.1, or E850.22.

For most observations, patient county of residence is reported. In case of county masking,

I assign patients to counties using ZIP5 where available and ZIP3 if ZIP5 is masked. For

2006, a year for which I have both data sources, the correlation between the number of

opioid-related hospitalizations in the California Overdose Surveillance Dashboard and in the

Public Patient Discharge Data is over 0.99. This finding alleviates the concern that the two

data sources are not comparable.

In robustness checks using Arteaga and Barone’s (2022) original cross-sectional instru-

ment, I use county-level demographic controls from the Survey of Epidemiology and End

Results (SEER) from 1998 through 2017. Demographic controls include estimates of the

share of the population that is white, the share of the population that is Black, the share of

the population that is Hispanic, the share of the population that is female, the share of the

population that is under one year of age, the share of the population between ages 18 and

65, and the share of population over age 65.7 I also add additional time-invariant controls

from the 2000 Decennial Census including the percentage of adults in a county with a college

degree, the share of the county below the poverty line, the population density, and the mean

commute time for workers living in the county. Because this alternate instrument does not

2ICD-9 codes 965.00, 965.01, 965.02, and 965.09 refer to “Poisoning by opium (alkaloids), unspecified,”
“Poisoning by heroin,” “Poisoning by methadone,” and “Poisoning by other opiates and related narcotics,”
respectively. ICD-9 codes E850.0, E850.1, and E850.2 refer to “Accidental poisoning by heroin,” “Accidental
poisoning by methadone,” and “Accidental poisoning by other opiates and related narcotics,” respectively.

7While these controls are helpful in contexts where county fixed effects cannot be used, I do not include
them in my primary specifications since these demographic estimates are imputations that can be unreliable
at smaller geographies in between national censuses. The county and time fixed effects also capture much of
the information that is used to construct these estimates.
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allow for the use of county fixed effects, these additional controls are used to control for some

observable sources of variation across counties that may relate to cancer rates, educational

outcomes, prescription opioid use, or some combination thereof. The time-invariant controls

are absorbed by the county fixed effects that are included in the primary specifications using

the new instrument.

3.2 Education Data

Education data—including standardized test scores, high school dropout rates, and SAT

participation rates—come from the California Department of Education website, either di-

rectly or via archived Web pages on the Wayback Machine.8 In some cases where the Way-

back Machine had not archived actual data files but had archived data-file URLs, data were

also accessible directly from the Web even though the California Department of Education

had long since removed the associated landing page. Data are either available at the school,

district, or county level, depending on the year and the source. I harmonize variables across

years and collapse all data to the county level to create a balanced panel of educational

outcomes spanning the first and second waves of the opioid epidemic.9

One of the primary sources for test-score data comes from the California Standardized

Testing and Reporting (STAR) exams, which were administered in California public schools

between 1998 and 2013.10 The components of the exam, as well as which grades were tested,

varied over the course of the STAR program. However, all second through sixth graders and

all second through eleventh graders took the same form of the California Standards Tests in

math and in English Language Arts (ELA), respectively, throughout most of the years that

the STAR exams were used. Many California public schools begin dividing math students

into different tracks by difficulty level in seventh grade, a practice that resulted in different

8Much of the education data was removed from the California Department of Education website based
on compliance with their data retention policy. From their website: “The CDE has established a data
retention policy for data reports and downloadable data files that are maintained on our website, including
DataQuest. In general, data will be publicly posted for up to 10 years. The exception to this policy will be
the Enrollment downloadable data files which may be posted for longer than 10 years. In the event that the
CDE determines there is no longer a need to publicly report data the CDE will retain retired data for up to
6 months.”

9I plan to make this dataset available as a public good for other economics and education researchers.
10In 2014, the STAR exams were replaced with the California Assessment of Student Performance and

Progress (CAASPP) System. This study does not evaluate changes in CAASPP System scores as they may
not be directly comparable to STAR exam scores.
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students in the same grade participating in different exams (e.g., geometry versus algebra)11.

STAR exam scores are available via the Wayback Machine starting with the first exams in

1998, but I restrict the primary analytic sample to 2002 onward to account for substantial

changes to the structure of the ELA exam starting in 2002.

I also use data from the California High School Exit Exam (CAHSEE). California public

schools began administering the CAHSEE in 2001 and started requiring students to pass

both the math and the English sections of the CAHSEE beginning with the class of 2006,

who first took the exam as tenth graders in 2004. The CAHSEE was last administered in

2015, after which it was suspended as a graduation requirement. With the exception of the

“trial” year of 2001, high schoolers could begin taking the CAHSEE in their sophomore year

and could retake the test until they had passed both sections. In practice, most California

high schoolers took and passed both sections of the CAHSEE in their sophomore year of

high school. CAHSEE scores are available starting in 2001.

High school dropout rates are available from 1992 through 2017. SAT take-up rates

are available for 1999 through 2015. California also administers physical fitness exams to

students in grades five, seven, and nine. These exams come from the Cooper Institute’s

FitnessGram program and include six different areas: aerobic capacity, body composition

(BMI), upper body strength, abdominal strength, trunk extensions, and overall flexibility.

Until 2021, all six parts were required, after which the body composition exam became

optional. Fitness scores are available for 1999 and then again for 2001 through 2015.

To summarize, all educational outcomes are measured at the county level, with years

analyzed subject to data availability and consistency. In my analysis, I use STAR exam

scores starting in 2002, CAHSEE exam scores starting in 2001, high school dropout rates

starting in 1997, SAT participation rates starting in 1999, and fitness scores starting in 1999

(but excluding the missing year of 2000)—all after the launch of OxyContin in 1996.

4 Empirical Strategy

As discussed earlier, opioid use is not random in the population. Although opioid death

rates are higher for low-income individuals, the prescription opioid epidemic actually started

11Anecdotally, this system also resulted in some gaming by schools in which students sometimes took a
different math exam than the exam corresponding to the class they actually took in a given year.
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and grew with increased prescribing to relatively economically well-off individuals (Cur-

rie and Schwandt, 2021). Between 2006 and 2014, 85% of opioids were purchased using

employer-sponsored health insurance, and more highly educated counties had higher per

capita opioid prescribing (Currie et al., 2019). Thus, counties with higher opioid prescribing

may also be counties with ex ante higher parental and community inputs into children’s

education. To address endogeneity in the growth of the opioid epidemic, I use a new, time-

varying instrumental variable, which builds upon the instrument proposed in Arteaga and

Barone (2022).

As described in depth in Arteaga and Barone (2022), the introduction of OxyContin in

1996 and subsequent marketing by its manufacturer, Purdue Pharma, dramatically affected

the trajectory of the opioid epidemic in the United States. OxyContin differed from previous

popular prescription opioid medications in that it was longer acting and did not include a

second analgesic such as ibuprofen or acetaminophen to constrain the amount of oxycodone

that could be ingested at a time.12 These two characteristics made OxyContin more addictive

and more easily abused. At the same time, Purdue Pharma launched an unprecedentedly

large marketing campaign to change physician prescribing behavior. Although most data

that would directly measure Purdue Pharma’s marketing efforts are not publicly available,

Arteaga and Barone (2022) use unsealed court records from the numerous criminal and civil

lawsuits brought against Purdue Pharma and document that Purdue Pharma’s marketing

strategy directly targeted the cancer-pain market. The authors substantiate this by showing

a strong relationship between mid-1990s cancer rates and marketing data that are available

via the CMS Open Payments database and Massachusetts court records. Purdue Pharma

specifically began their marketing of OxyContin to the cancer-pain market and then ex-

panded efforts in commuting zones that were early and enthusiastic adopters of the new

drug. This historical background motivates Arteaga and Barone’s (2022) use of cancer rates

just prior to OxyContin’s launch as an instrument for the growth of the opioid epidemic.

They argue that local cancer rates in 1994 through 1996 can serve as a proxy for areas with

many cancer patients at the time of OxyContin’s launch in 1996. Figure 1A and 1B show

12Adding ibuprofen or acetaminophen to opioid medications limits consumption because these additives
can cause complications such as gastrointestinal bleeding or acute liver failure if more than the directed
dosage is taken.
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that this geospatial relationship between cancer rates in the mid-1990s and opioids per capita

at the peak of the prescription opioid epidemic holds for California counties.13 Table 1 shows

California-specific means of opioids per capita in 2000, in 2015, and over the 16-year period

between 2000 and 2015.

The time-invariant nature of their instrument, however, precludes the use of county fixed

effects. Arteaga and Barone (2022) partially mitigate this limitation of their instrument

through the use of long differences, but the identification assumptions in their approach

are relatively strong in the context of education and potentially sensitive to the choice of

base year.14 Interpretation of second-stage results from instrumental variables regressions is

also more complicated with the long-difference estimator, reducing comparability with other

studies in the education domain. To address this, I develop a new instrument, incorporating

new information about the trajectory of Purdue Pharma’s marketing strategy.

Using new court documents from the UCSF Opioid Industry Documents Library, I chron-

icle the next step in Purdue Pharma’s evolving marketing strategy. While the initial mar-

keting strategy targeted oncologists, one of the first areas of expansion identified in Purdue

Pharma’s marketing meetings was the arthritis market. The 2000, 2001, and 2002 OxyCon-

tin Marketing Budget Plans all stress the targeting of rheumatologists and patients with

osteoarthritis (see Appendix Figure A1). After a successful penetration of the cancer mar-

ket, the non-cancer pain market clearly became Purdue Pharma’s target in the early 2000s

(see Appendix Figure A2). This documented shift in marketing priorities motivates my

time-varying instrument, which accounts for both the initial marketing strategy and the

growing marketing in areas that already had a higher presence of physician detailing. This

relationship is seen in Figure 2, which shows the average opioids per capita in counties with

above-median knee replacements15 and below-median knee replacements, split by whether

the county had above-median 1990s cancer rates or below-median 1990s cancer rates. After

2000, counties with high knee replacement rates experienced a rapid growth in opioids per

13Demonstrating this relationship in the context of California in particular is important because California
was among the five states with a triplicate prescription program, which reduced (but did not eliminate) the
amount of marketing Purdue Pharma pursued in California compared to non-triplicate states (Alpert et al.,
2022).

14Spierdijk (2022) also notes that fixed effects estimators can be recast as the “weighted matrix average
of differences estimators,” suggesting fewer researcher degrees of freedom when using fixed effects.

15Knee replacement surgery is primarily used for the treatment of osteoarthritis when conservative mea-
sures fail to relieve pain.
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capita and diverged from counties with low replacement rates, but only when the 1990s

cancer rates had been high. Figure 2 suggests that, while both cancer rates and knee re-

placement rates account for some of the variation in the growth of prescription opioids, the

interaction of these two variables is a much clearer predictor of prescription opioid use in

a county. Figure 3 shows a snapshot of the distribution of knee replacements per capita

in California in 2010 for comparison with the distribution of 1990s cancer rates and with

opioids per capita as shown in Figure 1.

I thus build upon past work by interacting the 1990s cancer rates with contemporaneous

adjusted knee replacements per capita to provide a new time-varying instrument that proxies

for Purdue Pharma’s marketing strategy across time and space. The UCSF court documents

also indicate that Purdue Pharma increased targeting of patients with back pain, with certain

types of injuries, and with neuropathic pain, but I focus on knee replacements (used to

treat osteoarthritis) because, unlike the other conditions targeted, osteoarthritis is easily

verifiable via imaging and other diagnostic tests.16 This aspect of osteoarthritis is important

because it limits the concern that drug-seeking behavior may drive the instrument. Because

osteoarthritis develops over many years, it does not reflect recent changes to population

health that would pose a threat to the exclusion restriction. The Dartmouth Atlas adjusts

knee replacement rates by age, sex, and race, further mitigating concerns that year-to-year

changes in knee replacements are driven by demographic shifts that could independently

affect outcomes.

The Centers for Medicare and Medicaid launched the Medicare Part D Overutilization

Monitoring System in the later half of 2013 to combat opioid prescribing to the elderly,

reducing the profitability of marketing opioids to physicians serving the osteoarthritis market

(CMS, 2015). Because of this, my primary analyses are restricted to years before 2014.17

My instrument is defined as follows:

Marketingct = Mean Cancer 94-96c ∗
Adjusted Knee Replacementsct

County Populationct

(1)

16Hip replacements are also often used to treat deterioration from osteoarthritis, but hip replacement
surgery is much less common, has a shorter recovery time, and is associated with much less pain than knee
replacement surgery.

17Results are similar with the inclusion of additional years of data where available, though the instrument
is somewhat weaker.
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The motivation for this functional form is two-fold. First, a simple interaction is easier to

interpret than more complex combinations of variables. Second, and more importantly, doc-

uments describing the marketing strategies of Purdue Pharma also support a multiplicative

relationship. The Purdue Pharma marketing plans describe significant face-to-face compo-

nents of their strategy, with sales representatives being assigned to specific territories made

up of ZIP codes. Quarterly health data from IMS health and other sources informed the

marketing goals and the bonus structure that sales representatives received—but it would

have been easier to make adjustments and increase detailing in areas where detailers were al-

ready located. Thus, areas with more detailers who were originally allocated for the purpose

of marketing to oncologists could more easily adapt to the new focus on chronic condi-

tions. One might be concerned that, after the initial shift to the osteoarthritis market,

Purdue Pharma would not change its marketing strategy year-to-year to support a truly

time-variant instrument. The marketing plans assuage this concern, however, describing ad-

justments made quarter-to-quarter that account for measured changes in numerous factors

including “physician address updates, changes in physician apportioning, or matching new

physicians” (Purdue Sales Bulletin - Incentive Bonus Program - SOP Update, 2001).18

The main specification is as follows:

First Stage:

Presc. Opioids ct = α1+ϕMarketing ct+ψCancer Ratect+χPercent FFSct+ξc+γt+vct (2)

Second Stage:

yct = τ1 + β ̂Presc. Opioids ct + ζCancer Ratect + κPercent FFSct + ηc + λt + εct (3)

where c indexes counties and t indexes time in years. County fixed effects control for all

time-invariant variation in outcomes specific to each county. Year fixed effects control for

variation in outcomes that is common to all counties in California within a year. I also control

for the contemporaneous cancer rate in each county in each year as well as the percent of

18The full details of these plans are not available to construct a direct instrument, but the “Purdue Sales
Bulletin - Incentive Bonus Program - SOP Update” from 2001, which provides an overview of how the bonus
program was adjusted quarter to quarter, is available from the UCSF Opioid Industry Documents Library.
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the population over 65 in fee-for-service Medicare, as the Dartmouth Atlas does not include

Medicare Advantage. Controlling for contemporaneous cancer rates reduces concerns that

variation in population health unrelated to the opioid epidemic that may co-vary with the

marketing instrument might bias estimates. Standard errors are clustered at the county level

and regressions are weighted by the relevant county-level population in each specification.

The parameter β represents the effect of opioid prescriptions per capita induced by Pur-

due Pharma’s marketing strategy on each educational outcome. It is worth noting that

the intensity of the opioid crisis is not fully captured by opioid prescriptions per capita or

by the opioid hospitalization measures I use in further robustness checks, but the reduced

form estimates of the effects of my marketing instrument on educational outcomes are diffi-

cult to interpret. The instrument also does not fully capture all opioid marketing, just one

important driver of it—thus my instrumental variables approach.

California has a total of 58 counties. The ARCOS data covers all but 5 of them, and

the dropped counties are relatively small. Furthermore, with 53 counties, using Angrist and

Pischke’s (2008) “rule of 42,” I am left with a suitably large number of counties to cluster

standard errors. I show that the first stage is strong, but to further ameliorate any concerns

regarding weak instruments, I also report the Anderson–Rubin p-value and the tF-adjusted

standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022)

for each regression.

5 Opioid Marketing and the Opioid Epidemic

5.1 Opioid Marketing Instrument Validity

The idea underlying the marketing proxy I use as an instrument for presciption opioids

is that 1990s cancer rates capture the initial allocation of pharmaceutical detailers— which

created some degree of path dependence in future marketing decisions by Purdue Pharma—

and the year-to-year variation in the intensity of knee replacement surgeries in a county

capture the adjustments that Purdue Pharma made to its marketing strategy in response to

evolving marketing opportunities. In order for the marketing proxy to be a valid instrument,

it must be strongly correlated with prescription opioids per capita but uncorrelated with the

error term in the second stage. This exclusion restriction would be violated if the interaction

between 1990s cancer rates and adjusted knee replacement rates is related to health or
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demographic shocks that could affect educational outcomes through channels other than

their effect on opioid prescribing. Here, the interaction of two different sources of variation is

helpful in reducing the strength of the assumptions required for identification since potential

exclusion violation restrictions would need to operate through the interaction of these two

variables instead of either individually. The use of adjusted knee replacement rates instead

of crude knee replacement rates also helps reduce concerns about the instrument picking

up demographic shocks over time that could independently affect educational outcomes.

One might be concerned that the relationship between adjusted knee replacement rates

and opioids could be related to common health shocks to counties that could violate the

exclusion restriction. To test this possibility, I also consider placebo outcomes such as non-

opioid deaths of despair in Section 5.3 and “placebo” instruments that use other measures

of geriatric healthcare intensity from the Dartmouth Atlas that are unrelated to opioid

marketing in Section 5.4.

5.2 The First Stage in California

While the strength of the first stage varies with the number of years of data available

for each outcome and the weighting variable used, the first stage is generally strong. Table

2 shows the first stage estimate for a range of analytic samples.19 Using the effective F-

statistic developed by Montiel Olea and Pflueger (2013), this statistic ranges between 11.5

and 14.5. The first stage coefficient on the marketing instrument ranges from 19.5 to 30,

depending on the sample used in the estimation. Moving from the 25th percentile to the

75th percentile of the marketing instrument corresponds to approximately a 45 to 70 percent

increase in prescription opioids per capita, depending on the set of years and weights used

in the analysis.20 Since the first stage also controls for county fixed effects that absorb time-

invariant cross-sectional heterogeneity across counties, it is the heterogeneous response by

1990s cancer rates to the the temporal variation in knee replacements that drives this first

19The samples vary somewhat since the number of years of data available are different across outcomes.
20To better understand the way that 1990s cancer rates and knee replacement rates correspond to the

marketing instrument, consider two hypothetical counties, one at the 25th percentile of the instrument and
the other at the 75th percentile of the instrument for the years 2002 to 2013. If these two counties had
the same 1990s average cancer rate, the county at the 75th percentile would have a knee replacement rate
approximately 55 percent higher than the county at the 25th percentile. If these two counties had the
same knee replacement rate in a given year, the county at the 75th percentile would have a 1990s cancer
rate approximately 55 percent higher than the county at the 25th percentile. The CDF of the marketing
instrument for this sample is shown in Appendix Figure A3.
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stage.

5.3 The First Stage and Opioid Mortality in National Data

I further support the validity of my marketing instrument by estimating the reduced

form effect of the marketing variable and the effect of instrumented prescription opioids on

mortality using data spanning the entire country from 2000 to 2013, the primary period of

analysis in this study. I estimate these effects on three measures of opioid mortality at the

county level: (1) overall drug overdoses, (2) drug overdoses involving opioids, and (2) drug

overdoses involving prescription opioids following the definitions used in Alper et al. (2022).

As shown in Table A1, all three measures of opioid deaths have a strong relationship with

the marketing instrument and with instrumented prescription opioids. The instrument is

also (unsurprisingly) much stronger in the national sample with an F-stat of 69.

I also estimate the effects of the instrument and of instrumented prescription opioids on

two placebo outcomes: (1) deaths from alcohol poisoning and (2) deaths from cardiac disease.

Alcohol poisoning deaths also constitute deaths of despair, but the marketing strategy of

Purdue Pharma should not directly affect alcohol use or abuse. Cardiac deaths reflect

general population health and especially the health of older individuals (who constitute the

relevant population receiving knee replacements). If my proxy for the marketing strategy

of Purdue Pharma were strongly related to either alcohol poisonings or cardiac deaths that

would suggest a exclusion restriction violation wherein the marketing instrument could affect

outcomes through other channels than its affect on prescription opioids. Neither of the

placebo mortality outcomes is related to the marketing instrument or with instrumented

prescription opioids (Table A1, Columns 7–10).

I do not estimate the effects of the opioid epidemic in a national sample because national

education data from the Stanford Educational Data Archive are not available until 2009,

which is nearly the peak of the prescription opioid epidemic.

5.4 Placebo Instruments

Table 3 shows the estimates from placebo instruments that use other measures of health-

care utilization in Medicare that are unrelated to opioid marketing instead of knee replace-

ments. These placebos instruments include both more relatively rare procedures such as

abdominal aortic aneurysm repair and procedures that are much more common than knee
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replacements such as percutaneous coronary interventions (PCI). None of the six placebo

instruments shown in columns 2 through 7 has a significant first stage. These results pro-

vide reassurance that the subsequent second stage results are not driven by common health

shocks to the population, by the density of the population over age 65 (i.e., the Medicare

population), or by demographic shifts not accounted for in the adjustments made to knee

replacement rates in the Dartmouth Atlas that could create violations of the exclusion re-

striction. If the adjustments made by the Dartmouth Atlas failed to account for important

unobservable demographic shifts correlated with knee replacement rates, opioid use, and

educational outcomes, one would expect other Dartmouth Atlas measures for this same

population to also reflect those confounds.

6 Results

6.1 Student Outcomes

I find strong and consistent evidence that community prescription opioid use decreased

STAR exam scores in both math and ELA across the grade distribution. As seen in Tables

4A and 5A, moving from the 25th to the 75th percentile of instrumented prescription opioids

per capita, math and ELA test scores fall by 0.65% to 1.57% of the mean in test scores. This

magnitude of effects is comparable to the effect that Aizer et al. (2018) find for the test

scores of third graders in Rhode Island moving from zero detectable lead to the average level

of detectable lead. The point estimates become smaller in magnitude with grade level for

ELA scores and larger in magnitude with grade level for math scores, but these differences

are not statistically significant. This result provides some suggestive evidence that children’s

language skills may be more adversely affected by community opioid use at younger ages

and children’s mathematical skills may be more adversely affected by community opioid use

at older ages. The point estimate of the effect size for math scores is 54% bigger in sixth

grade than in second grade. The point estimate of the effect size for ELA scores is 10%

smaller in sixth grade than in second grade, and the effect size continues to fall beyond sixth

grade. With more grades for comparison for ELA test scores, the trend toward decreasing

effect sizes with each grade in school is visually more apparent in Figure 5. Again, however,

the confidence intervals for the effect sizes for ELA scores in grades 2 and grade 11 overlap.

This pattern may emerge if ELA skills are relatively more sensitive to reduced inputs in early
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childhood when language plasticity is the highest—but no concrete conclusions can be drawn

here given the lack of precision in these estimates. The strong effects for young children and

the lack of evidence of greatly increasing effects with grade level is still informative, as it

indicates that the negative impacts are unlikely to reflect direct opioid use by children.

Comparing Table 4A to Table 4B and Table 5A to Table 5B, the instrumental variables

models indicate much larger effect sizes than the OLS models, suggesting an upward bias

from omitted variables in the absence of the instrument, pushing the coefficient toward zero.

The STAR exam content reflects standards that are specific to each grade level. The

CAHSEE exams, by contrast, provide a single measure of student mastery of high school

standards. Since these exams test material learned over the course of many years, effects

on high school exit exam scores indicate a cumulative effect of community opioid use on

human capital attainment. Estimates of the effects of community prescription opioid use

on CAHSEE scores and pass rates presented in Table 6 similarly indicate strong negative

effects on student learning. Moving from the 25th to the 75th percentile of instrumented

prescription opioids per capita, math scores (in column 1) fall by 0.89% and ELA scores

(in column 3) fall by 0.59% of the mean. These estimates are of a similar magnitude to

those measuring the effects on STAR exam scores. The similarity in the magnitudes of the

effects on STAR exams and CAHSEE exams is reassuring, as these exams are given to the

same students but at different times in the school year. Moving from the 25th to the 75th

percentile of instrumented prescription opioids per capita, pass rates for math and ELA

exams (in columns 2 and 4, respectively) fall by three to four percent of the mean pass rates.

The fact that the effect sizes for pass rates are larger than the effect sizes for mean scores may

reflect more adverse effects of the opioid crisis for students at the left tail of the distribution.

This suggests that students who are already struggling to meet educational standards may be

more impacted by the spillovers of community opioid use. This result is consistent with Aizer

et al. (2018), who find larger effect sizes for the probability of students being below proficient

than for mean test scores for students exposed to lead. All estimates with the instrumental

variables model in Table 6A are much larger in magnitude than the OLS estimates in Table

6B, again suggesting the importance of accounting for omitted variable bias.

Turning to measures reflective of educational attainment, Table 7 shows the effects of

opioids per capita on high school dropout rates for each of grades 9 through 12, overall high
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school dropout rates, and SAT take-up rates, which are an indicator for college readiness.

Changes in overall dropout rates are not significant, but ninth- and (marginally) tenth-

grade dropout rates increase with instrumented prescription opioids per capita. This result

suggests that, conditional on dropping out of high school, students affected by the opioid

crisis drop out at an earlier time, reducing total years of schooling for marginal students.

This effect provides evidence that the opioid epidemic has reduced educational attainment as

well as achievement for the most vulnerable students. Estimates of the returns to schooling

in the United States vary substantially in the existing literature, but there is clear evidence

that human capital accumulation matters for long-term outcomes, even among students who

do not obtain a degree (Deming, 2023). Table 7 also shows a negative effect of opioids on

SAT take-up. Comparing Panel A, which shows instrumental variable estimates, and Panel

B, which shows OLS estimates, we yet again see that OLS estimates are biased toward zero.

I also test for effects on physical fitness test scores, but estimates are noisy and show no

clear pattern. The sign of point estimates vary both across different elements of the physical

fitness exam and across grades measured. These results are not surprising, as most (but not

all) of the mechanisms by which community opioid use are likely to affect children operate

more strongly through cognitive and emotional channels than through physiological channels.

Community opioid use has the potential for numerous types of spillovers on children whose

parents may not take opioids themselves. For example, the negative externalities of disruptive

peers in the classroom would not have physical effects. Although prenatal exposure to opioids

may have strong physiological effects on children, these effects would take many years to

manifest, and it is unlikely that accidental opioid poisonings of children would be frequent

enough to drive substantial concurrent physical effects. Estimates for physical fitness scores

for Grade 7 are presented in Table 8 and for Grade 5 and Grade 9 in the appendix.

6.2 Heterogeneity Analysis

6.2.1 Gender and Socioeconomic Status

Past work measuring gender differences in response to other forms of disadvantage in-

cluding race, parental martial status, and socioeconomic status has generally found that boys

are more sensitive to adversity than girls are (Bertrand and Pan, 2013; Chetty et al, 2016;

Autor et al., 2019). Within a community, high-income families may also be able to buffer
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their children against the adverse effects of the opioid epidemic through private resources

unavailable to low-income families. Thus, one might expect differences in the effects of the

opioid crisis both by gender and by socioeconomic status. Standardized-test–score reporting

practices have changed over time to include many different student subgroups of interest, but

STAR test scores by sex and by socioeconomic status were reliably reported by most coun-

ties between 2002 and 2013. According to the California Department of Education, students

are considered to be socioeconomically disadvantaged if one of the follow conditions is met:

“1. neither of the student’s parents has received a high school diploma; 2. the student is

eligible for or participating in the Free Meal program or Reduced-Price Meal program; 3. the

student is eligible for or participating in the Title I Part C Migrant program; 4. the student

was considered Homeless; 5. the student was Foster Program Eligible; 6. the student was

Directly Certified; 7. the student was enrolled in a Juvenile Course School; 8. the student

is eligible as Tribal Foster Youth.”

Figures 6A and 6B demonstrate the effect size with respect to test scores moving from the

25th percentile to the 75th percentile of instrumented opioids per capita by grade and gender

for STAR math scores and STAR ELA scores, respectively. These figures provide no evidence

of heterogeneous treatment effects by gender, with remarkably similar estimates for each

group in each grade. Although the past economics literature has typically found that boys’

educational outcomes are more affected by adverse childhood experiences, gender gaps in

responses to adversity are much lower for test scores than they are for more extreme outcomes

such as suspension (Autor et al., 2019). This finding is consistent with the broader literature

indicating that girls tend to have less dispersion in outcomes than do boys, leading to a

concentration of extreme adverse outcomes among boys. Because I measure only aggregated

test scores by gender, my analysis may be missing heterogeneous treatment effects by gender

for outcomes not measurable in my data including suspensions and expulsions from school.

Figures 7A and 7B demonstrate the effect size with respect to test scores moving from

the 25th percentile to the 75th percentile of instrumented opioids per capita by grade and

socioeconomic status for STAR Math scores and STAR ELA scores, respectively. These

figures similarly provide no evidence of heterogeneous treatment effects by socioeconomic

status, with clearly overlapping confidence intervals in each grade. The point estimates of

treatment effects are a little smaller for economically disadvantaged students, so not all esti-
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mates are statistically significant for this subgroup; these estimates remain indistinguishable,

however, from those from the test scores of students who are not economically disadvantaged.

The fact that treatment effects are negative and precise for non-economically disadvantaged

students in every grade for both math and ELA tests provides further evidence that the

opioid epidemic has had far reaching consequences for individuals across the income distri-

bution. At the same time, test scores are lower on average for economically disadvantaged

students, so similar percent reductions in test scores may have more serious consequences

for those students.

6.2.2 Treatment Dynamics

As discussed in Section 2, there are many different channels through which the opioid

epidemic may adversely affect human capital development. While my primary analysis

focuses on contemporaneous measures of community opioid use that best reflect the acute

stress of the crisis, many of the mechanisms may have lagged effects that would take time

to be reflected in test scores. One would also expect potentially larger lagged effects as

prescription opioid users who were initially prescribed opioids for more medically appropriate

causes develop inappropriate opioid use over time. Unfortunately, even pooling test scores

across grade levels, I lack statistical power to detect significant differences between the effects

of contemporaneous opioids per capita and lagged opioids per capita on test scores. The

point estimates, however, are in the expected direction, hinting toward potentially larger

effects of lagged opioids. Results are presented for lags up to five years in Appendix Figures

A4 and A5.

7 Robustness Checks

7.1 Using the Cross-Sectional Cancer Instrument

I also estimate all models using the Arteaga and Barone’s (2022) original cross-sectional

cancer instrument. My preferred specifications use my time-variant instrument because

the inclusion of county fixed effects implies weaker identification assumptions in the complex

context of childhood education. However, Arteaga and Barone’s (2022) instrument and their

approach of expressing variables in terms of long changes is conceptually useful because long

changes reflect the cumulative exposure to community opioid use that students faced.

This alternate specification is as follows:
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First Stage:

∆ Presc. Opioids ct = α1 + ϕ Cancer MRct0 + α∆Xct + ξYc + γt + vct (4)

Second Stage:

∆yct = τ1 + β∆ Presc. Opioids ct + τ∆Xct + ηYc + λt + εct (5)

where c indexes counties, t indexes time in years, and t0 is the average of the 1994 to 1996

period. For any random variableWct,∆Wct equals the differenceWct−Wc1. The vector ∆Xct

represents time- and county-varying control variables, including county-level demographics

and contemporaneous cancer rates. The vector Yc represents additional county-level controls

from the 2000 Decennial Census that are not reliably measured on a yearly basis, including

the percentage of adults in a county with a college degree, the share of the county below the

poverty line, the population density, and the mean commute time for workers living in the

county. Year fixed effects control for variation in outcomes that is common to all counties in

California within a year. Standard errors are clustered at the county level and regressions

are weighted by the relevant student population in each specification.

Here, the parameter β represents the effect of a change in opioid prescriptions per capita

since the baseline year on the change in educational outcomes measured since that same

baseline year.21 The first stage estimates are presented in Appendix Table A4. Results

are presented in Appendix Tables A5 through A9. Generally, estimates are consistent but

with larger standard errors than the estimates in my preferred specifications. As in my

preferred specifications, the instrumental variables estimates indicate that the OLS estimates

are biased toward zero.

7.2 Using Opioid Hospitalization Rates

My main specifications use opioid shipments as the local measure of the intensity of the

opioid epidemic, as the ARCOS data provide a less noisy measure of opioid use than do data

21Arteaga and Barone (2022) always use the baseline of year 1997 for opioids per capita, but I prefer
to use the earliest baseline year that is available for each outcome for ease of interpretation, because most
of my outcomes are only measured starting later than 1997. For high school dropout measures, which are
available earlier than opioid shipment data, I use 1997 as the base year.
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on opioid hospitalizations. There are, however, two notable pitfalls with utilizing opioid

shipments as a measure of community opioid use that using opioid hospitalizations as an

alternative measure avoids. First, one threat to identification in my preferred specifications

would be potential changes over time in the exportation of prescription opioids across county

borders. Opioid hospitalizations more consistently reflect where opioid use occurred over time

because ambulance catchment zones are independent of opioid trafficking. Second, ARCOS

opioid-shipment data are a measure of community opioid use, but they are not a direct

measure of community opioid abuse, the later of which is more likely to negatively affect

children. Opioid hospitalizations better reflect inappropriate use of opioids.

To alleviate both of these concerns, I re-estimate the instrumental variables models to

measure the effects of the opioid epidemic on educational outcomes using opioid hospital-

izations per capita instead of opioid prescriptions per capita as the measure of the intensity

of the opioid epidemic. The first stage estimates, presented in Appendix Table A10, are

similar in strength to those of the primary specification. Estimates, which are presented in

Appendix Tables A11 through A15, are also broadly similar using this measure. The similar-

ity in estimates suggests that the areas with high prescription opioid use driven by Purdue

Pharma’s marketing strategy are also the same areas with increased opioid abuse during

this time period, which is consistent with the dominance of prescription opioids during this

phase of the opioid epidemic.

8 Conclusion

These results provide strong evidence that the opioid epidemic slowed educational progress

in California. The reduction in test scores from the opioid epidemic are both pervasive across

grade levels and subjects and economically significant in magnitude. To provide another

point of reference, a one standard deviation increase in instrumented prescription opioids

per capita corresponds to a decease in average test scores equivalent to 30 percent of the

difference in third grade math test scores between socioeconomically disadvantaged students

and non-socioeconomically disadvantaged students in California. At a time when test scores

and educational attainment improved overall, counties that had greater changes in prescrip-

tion opioids had smaller improvements in educational outcomes. These results are unlikely

merely to reflect regression to the mean, as effects are small in OLS estimates. Despite the
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popular (and mostly unsubstantiated) narrative that the opioid epidemic was caused by eco-

nomic distress, most prescription opioids are—and were—purchased by people with private

health insurance, who are likely employed (Currie and Schwandt, 2021). Thus, counties that

would be more affected by the opioid epidemic may be positively selected with respect to

educational outcomes for the children of these more highly employed adults, suggesting one

clear source of omitted variable bias in the OLS regressions.

An important limitation of this paper is that I am constrained in evaluating the specific

mechanisms by which opioid use affects educational outcomes. The strong effects for young

children provide evidence that the effects are not largely driven by the consumption of

opioids by children themselves, but there are many channels by which spillovers on non-

users of opioids may have an effect. Future work should investigate the effects of community

opioid use on school attendance, suspensions, and expulsion. These outcomes may be able

to indicate behavioral and socio-emotional channels that affect test scores. Children with

conduct disorder, for example, often have high rates of suspension and expulsion. Children

with conduct disorder also have worse academic performance (Currie and Stabile, 2009).

Another limitation of these analyses is that ARCOS opioid-shipment data are a measure of

community opioid use but not a direct measure of parental opioid abuse, the latter of which

is more likely to negatively affect children. Thus, I am unable to determine to what degree

the effects measured in this paper are attributable to the intent-to-treat effects of having a

parent who uses opioids versus the community-wide spillovers of the opioid epidemic that

affect children without direct exposure. Further data linkages could enable such estimates.

This paper provides the first quasi-experimental estimates of the effects of the opioid

epidemic on children’s educational outcomes, providing new evidence on the intergenerational

impacts of the opioid crisis. Given data availability, the effects mostly pertain to the first

and second waves of the opioid epidemic, prior to the widespread use of fentanyl. Yet even

in this ongoing third wave of the epidemic, opioid prescribing remains high, contributing

to the creation of new opioid addiction with resultant negative effects on children (Currie

and Schwandt, 2021). My analysis is also restricted to California, but California is the

most populous state in the United States and has a diverse population that reflects much

of the demographic variation found throughout the country. Future work is needed to fully

understand the mechanisms behind these negative effects of the opioid crisis on childhood
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human capital accumulation as well as on other potential spillovers on the health, well-being,

and development of children affected by community opioid use.
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Figures
Figure 1A. 1990s Cancer Mortality

Figure Notes : This figure shows counties in California by their quartile in the state distri-
bution of the average cancer mortality rate in 1994 through 1996. Counties in darker green
had higher cancer mortality.

Figure 1B. Opioids Per Capita in 2010

Figure Notes : This figure shows counties in California by their quartile in the state distri-
bution of opioid shipments per capita in 2010. Counties in darker green had more opioids
per capita in that year.
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Figure 2. Knee Replacements, Cancer, and Opioids in California

Figure Notes : This figure shows the average opioids per capita in counties with above-median
knee replacements (in blue) and below-median knee replacements (in green), split by above-
median 1990s cancer rates (in xs) and below-median 1990s cancer rates (in os). The drop
in opioids per capita in 2000 is an artifact of how ARCOS reported shipments in that year,
which is absorbed by year fixed effects in any analysis that uses data from 2000.

Figure 3. Knee Replacements Per Capita in 2010

Figure Notes : This figure shows counties in California by their quartile in the state distri-
bution of knee replacements per capita in 2010. Counties in darker green had more knee
replacements per capita in that year.
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Figure 4. STAR Math Effect Size by Grade

Figure Notes : This figure shows the percent decrease in test scores by grade when instru-
mented opioids per capita move from the 25th percentile to the 75th percentile. The bands
on either side of the plotted coefficients represent the 95% confidence interval.

Figure 5. STAR ELA Effect Size by Grade

Figure Notes : This figure shows the percent decrease in test scores by grade when instru-
mented opioids per capita move from the 25th percentile to the 75th percentile. The bands
on either side of the plotted coefficients represent the 95% confidence interval.
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Figure 6A. STAR Math Effect Size by Grade and Gender

Figure Notes : This figure shows the percent decrease in test scores by grade and by gender
when instrumented opioids per capita move from the 25th percentile to the 75th percentile.
The bands on either side of the plotted coefficients represent the 95% confidence interval.

Figure 6B. STAR ELA Effect Size by Grade and Gender

Figure Notes : This figure shows the percent decrease in test scores by grade and by gender
when instrumented opioids per capita move from the 25th percentile to the 75th percentile.
The bands on either side of the plotted coefficients represent the 95% confidence interval.
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Figure 7A. STAR Math Effect Size by Grade and Socioeconomic
Status

Figure Notes : This figure shows the percent decrease in test scores by grade and by socioeco-
nomic status when instrumented opioids per capita move from the 25th percentile to the 75th
percentile. The bands on either side of the plotted coefficients represent the 95% confidence
interval. According to the California Department of Education, students are considered to
be socioeconomically disadvantaged if one of the follow conditions is met: “1. neither of the
student’s parents has received a high school diploma; 2. the student is eligible for or partic-
ipating in the Free Meal program or Reduced-Price Meal program; 3. the student is eligible
for or participating in the Title I Part C Migrant program; 4. the student was considered
Homeless; 5. the student was Foster Program Eligible; 6. the student was Directly Certified;
7. the student was enrolled in a Juvenile Course School; 8. the student is eligible as Tribal
Foster Youth.”
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Figure 7B. STAR ELA Effect Size by Grade and Socioeconomic
Status

Figure Notes : This figure shows the percent decrease in test scores by grade and by socioeco-
nomic status when instrumented opioids per capita move from the 25th percentile to the 75th
percentile. The bands on either side of the plotted coefficients represent the 95% confidence
interval. According to the California Department of Education, students are considered to
be socioeconomically disadvantaged if one of the follow conditions is met: “1. neither of the
student’s parents has received a high school diploma; 2. the student is eligible for or partic-
ipating in the Free Meal program or Reduced-Price Meal program; 3. the student is eligible
for or participating in the Title I Part C Migrant program; 4. the student was considered
Homeless; 5. the student was Foster Program Eligible; 6. the student was Directly Certified;
7. the student was enrolled in a Juvenile Course School; 8. the student is eligible as Tribal
Foster Youth.”
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Tables
Table 1. Summary Statistics

Variable Mean SD N

Opioids Per Capita, 2000–2015 1.17 2.71 848
Opioids Per Capita 2000 0.28 0.65 53
Opioids Per Capita 2015 1.23 2.88 53
Cancer Deaths Per 100K, 1994–1996 164.4 26.7 53
Knee Replacement Rate Per 1K Medicare Enrollees 6.28 1.24 848

Weighted by county population.
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Table 2. First Stage Estimates
(1) (2) (3) (4) (5) (6)

VARIABLES Opioids Per Capita Opioids/Capita Opioids/Capita Opioids/Capita Opioids/Capita Opioids/Capita

Marketing 19.621*** 19.526*** 21.45*** 20.98*** 30.26*** 30.98***
(5.662) (5.654) (6.07) (5.99) (7.98) (8.17)

Constant 1.942** 1.938** 1.69** 1.63** 3.27*** 3.03***
(0.758) (0.756) (0.76) (0.76) (1.05) (0.99)

Observations 636 636 689 689 901 795
R-squared 0.976 0.976 0.97 0.97 0.91 0.92
Effective F-stat 11.6 11.52 12.23 12.12 14.33 14.53
Instrument Mean .0708 .0708 .0704 .0709 .0632 .0650
Sample STAR Math G2 STAR ELA G2 CAHSEE Math CAHSEE ELA G9 Dropouts SAT

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effective
F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013).

*** p<0.01, ** p<0.05, * p<0.1
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Table 3. First Stage Placebo Instruments
(1) (2) (3) (4) (5) (6) (7)

VARIABLES Opioids/Cap. Opioids/Cap. Opioids/Cap. Opioids/Cap. Opioids/Cap. Opioids/Cap. Opioids/Cap.

Real Instrument 30.52***
(8.21)

Cancer x CE -23.58
(14.36)

Cancer x VR 0.00
(0.00)

Cancer x CABG -12.11*
(7.15)

Cancer x TURP -0.00
(0.00)

Cancer x Aneurysm 0.00
(0.00)

Cancer x PCI -6.91
(5.65)

Observations 742 742 742 742 742 742 742
R-squared 0.94 0.93 0.93 0.93 0.93 0.93 0.93
Effective F-stat 13.72 2.5 .05 2.71 .24 .89 1.48
2005 Procedure Mean 7.0 1.8 1.3 3.2 4.2 0.6 9.1
Instrument Cancer x Knee Cancer x Carotid Cancer x Valve Cancer x Cancer x Cancer x A.A. Cancer x

Replacements Endarterectomy Replacement CABG TURP Aneurysm Repair PCI

Standard errors clustered at the county level. Regressions weighted by population. All regressions include controls for contemporaneous cancer rates, the percent
of the population over 65 in FFS Medicare, and county and year fixed effects. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger
(2013). CABG is an abbreviation for coronary artery bypass grafting. TURP is an abbreviation for transurethral resection of the prostate. PCI in abbreviation for
percutaneous coronary interventions. 2005 procedure means are expressed per 1,000 Medicare enrollees in California, except for TURP, which is expressed per 1,000
male Medicare enrollees.

*** p<0.01, ** p<0.05, * p<0.1
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Table 4. STAR Exam Math
(1) (2) (3) (4) (5)

VARIABLES G2 G3 G4 G5 G6

A. Instrumental Variables
Opioids per Capita -4.33** -5.84*** -5.86*** -7.24*** -6.66***

(1.92) (2.14) (2.14) (2.64) (2.16)
[ tF 0.05 se] [2.8988] [3.2568] [3.2488] [4.0162] [3.2845]
{AR p-value} {.0295} {.0056} {.0007} {.0012} {.0002}

R-squared 0.92 0.97 0.97 0.97 0.93
Effective F-Stat 11.6 11.41 11.43 11.44 11.4
Effect Size -.92 -1.22 -1.25 -1.57 -1.5

B. OLS
Opioids per Capita -1.90*** -2.10*** -1.86*** -2.16*** -1.93***

(0.63) (0.65) (0.58) (0.70) (0.62)

R-squared 0.96 0.98 0.98 0.98 0.98
Effect Size -.4 -.44 -.4 -.47 -.43
Observations 636 636 636 636 636
Outcome Mean 370.66 374.39 368.86 362.89 348.07

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions
include controls for contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare,
and county and year fixed effects. Effect size indicates the percent change in the dependent variable relative
to its mean when opioids per capita increase from the 25th to the 75th percentile. Effective F-stat is the
effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary,
Moreira, and Porter (2022). STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1
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Table 5. STAR Exam ELA
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
A. Instrumental Variables
Opioids per Capita -5.84*** -5.49*** -5.33*** -5.10*** -5.23*** -4.52*** -4.45*** -3.07** -3.59*** -2.73**

(1.88) (1.58) (1.46) (1.43) (1.45) (1.31) (1.36) (1.19) (1.22) (1.08)
[ tF 0.05 se] [2.8471] [2.4069] [2.2375] [2.1722] [2.2127] [2.018] [2.092] [1.8327] [1.8849] [1.6946]
{AR p-value} {.0011} {.0007} {.0001} { <.0001} {.0001} {.0001} {.0001} {.0037} {.0009} {.0067}

R-squared 0.94 0.91 0.97 0.96 0.96 0.97 0.97 0.97 0.95 0.94
Effective F-Stat 11.52 11.38 11.21 11.4 11.4 11.11 11.22 11.22 11.01 10.65
Effect Size -1.33 -1.29 -1.17 -1.15 -1.19 -1.02 -1.02 -.70 -.84 -.65

B. OLS
Opioids per Capita -1.89*** -1.53*** -1.76*** -1.33*** -1.39*** -1.40*** -1.37*** -1.08*** -1.26*** -1.07***

(0.64) (0.51) (0.48) (0.40) (0.45) (0.30) (0.37) (0.27) (0.35) (0.31)

R-squared 0.97 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.97
Effect Size -.43 -.36 -.39 -.3 -.32 -.32 -.31 -.24 -.29 -.25
Observations 636 636 636 636 636 636 636 636 636 636
Outcome Mean 346.14 334.22 356.36 348.21 344.85 346.55 343.79 345.8 336.29 331.51

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effect size
indicates the percent change in the dependent variable relative to its mean when opioids per capita increase from the 25th to the
75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is the
Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira,
and Porter (2022). STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1
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Table 6. CAHSEE
(1) (2) (3) (4)

VARIABLES Math Scores Math Pass Rate ELA Scores ELA Pass Rate

A. Instrumental Variables
Opioids per Capita -4.34*** -3.98*** -2.856*** -3.40***

(1.17) (1.44) (0.963) (1.23)
[ tF 0.05 se] [1.7487] [2.1578] [1.4485] [1.8493]
{AR p-value} {.0001} {.0089} {.004} {.0069}

R-squared 0.94 0.97 0.970 0.89
Effective F-Stat 12.23 12.23 12.12 12.12
Effect Size -.89 -4.33 -.59 -3.45
B. OLS
Opioids per Capita -1.25*** -1.01* -0.69** -0.81**

(0.37) (0.50) (0.29) (0.40)

R-squared 0.97 0.98 0.98 0.94
Effect Size -.25 -1.1 -.14 -.82
Observations 689 689 689 689
Outcome Mean 378.75 70.98 375.03 76.37

Standard errors clustered at the county level. Regressions weighted by number of students. All
regressions include controls for contemporaneous cancer rates, the percent of the population over
65 in FFS Medicare, and county and year fixed effects. Effect size indicates the percent change
in the dependent variable relative to its mean when opioids per capita increase from the 25th
to the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea
and Pflueger (2013). The AR p-value is the Anderson-Rubin p-value and the [tF 0.05 se] is the
tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter
(2022). CAHSEE test scores are available starting in 2001.

*** p<0.01, ** p<0.05, * p<0.1
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Table 7. Dropout and SAT Take-Up
(1) (2) (3) (4) (5) (6)

VARIABLES Dropouts G9 Dropouts G10 Dropouts G11 Dropouts G12 Dropouts Total SAT Take-Up

A. Instrumental Variables
Opioids per Capita 0.0030*** 0.0014* 0.0004 -0.0006 0.0020 -0.0096**

(0.0009) (0.0008) (0.0009) (0.0061) (0.0023) (0.0041)
[ tF 0.05 se] [.0013] [.0012] [.0013] [.0088] [.0033] [.0058]
{AR p-value} {.0018} {.0876} {.6894} {.9198} {.3976} {.0212}

R-squared 0.3064 0.4035 0.4108 0.5538 0.4980 0.5660
Effective F-Stat 14.33 14.14 13.85 13.96 14.08 14.53
Effect Size 9.95 4.64 1.24 -2 3.33 -1.71
B. OLS
Opioids per Capita 0.0009** 0.0004 0.0007 0.0033 0.0018 -0.0025*

(0.0004) (0.0004) (0.0005) (0.0037) (0.0016) (0.0013)

R-squared 0.7532 0.7847 0.6805 0.7608 0.7347 0.9480
Effect Size 2.88 1.46 2.4 10.86 3.01 -.45
Observations 901 901 901 901 901 795
Outcome Mean .02 .02 .02 .02 .04 .41

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effect
size indicates the percent change in the dependent variable relative to its mean when opioids per capita increase from the 25th to
the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is
the Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary,
Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Table 8. Physical Fitness Grade 7
(1) (2) (3) (4) (5) (6)

VARIABLES Aerobic Capacity Body Comp Upper Body Ab Strength Trunk Ext Flexibility

A. Instrumental Variables
Opioids per Capita -1.00* 0.83 -0.87 -0.72* -0.01 -0.56

(0.54) (0.80) (0.56) (0.40) (0.80) (0.71)
[ tF 0.05 se] [.7908] [1.1724] [.8157] [.5909] [1.1742] [1.0373]
{AR p-value} {.0574} {.2938} {.1234} {.0867} {.9929} {.4423}

R-squared 0.60 0.87 0.70 0.29 0.28 0.70
Effective F-Stat 13.41 13.41 13.41 13.41 13.41 13.41
Effect Size -1.05 .84 -.83 -.57 -.01 -.5
B.OLS

Opioids per Capita -0.59*** -0.13 0.03 0.02 0.37 0.00
(0.21) (0.13) (0.21) (0.19) (0.23) (0.28)

R-squared 0.87 0.92 0.83 0.74 0.57 0.77
Effect Size -.62 -.14 .03 .02 .27 0
Observations 741 741 741 741 741 741
Outcome Mean 62.4 64.98 68.55 83.58 88.87 74.77

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls
for contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed
effects. Effect size indicates the percent change in the dependent variable relative to its mean when opioids per capita
increase from the 25th to the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and
Pflueger (2013). The AR p-value is the Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error
for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Appendix
Figure A1. Clips from the 2000, 2001, and 2002 OxyContin Mar-
keting Plans

Figure A2. OxyContin Overall Strategy, 2002 OxyContin Market-
ing Plan
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Figure A3. Cumulative Distribution Function of the Marketing
Instrument

Figure Notes : Weighted by number of students. This sample corresponds to the estimates
for the first stage shown in Table 2, Column 1.
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Figure A4. Effect of Lagged Instrumented Opioids on Math Scores

Figure Notes : This figure shows the percent decrease in test scores in time t when instru-
mented opioids per capita in time t through time t-5 move from the 25th percentile to the
75th percentile. The bands on either side of the plotted coefficients represent the 95% con-
fidence interval. All grade levels are pooled in the analysis for power and grade fixed effects
are added to the model.

Figure A5. Effect of Lagged Instrumented Opioids on ELA Scores

Figure Notes : This figure shows the percent decrease in test scores in time t when instru-
mented opioids per capita in time t through time t-5 move from the 25th percentile to the
75th percentile. The bands on either side of the plotted coefficients represent the 95% con-
fidence interval. All grade levels are pooled in the analysis for power and grade fixed effects
are added to the model.
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Table A1. Effects of Prescription Opioids on National Mortality
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES Rx Opioid Rx Opioid Opioid Opioid Overdose Overdose Alc. Poison Alc. Poison Cardiac Cardiac

Marketing .0501** .0764*** .1288*** -.0036 -.1378
(.0217) (.0252) (.0349) (.0030) (.2689)

Opioids/Cap. .0041** .0063*** .0107*** -.0003 -.0113
(.0017) (.0021) (.0026)) (.0002) (.0210)

{AR p-value} {.0147} {.0014} {.0001} {.224} {.592}

Observations 43,654 43,654 43,654 43,654 43,654 43,654 43,654 43,654 43,654 43,654
R-squared .657 -.115 .682 -0.221 .707 -.307 .333 -.007 .939 .030
Outcome Mean .0358 .0358 .0495 .0495 .1080 .1080 .0041 .0041 2.816 2.816
Effective F-stat 68.97 68.97 68.97 68.97 68.97
Model RF IV RF IV RF IV RF IV RF IV

Estimation at the county-year level. Standard errors clustered at the county level. Regressions weighted by county population. All
regressions include controls for contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county
and state by year fixed effects. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR
p-value is the Anderson-Rubin p-value. Death rates expressed per 1,000 residents.

*** p<0.01, ** p<0.05, * p<0.1
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Table A2. Physical Fitness Grade 5
(1) (2) (3) (4) (5) (6)

VARIABLES Aerobic Capacity Body Comp Upper Body Ab Strength Trunk Ext Flexibility

A. Instrumental Variables
Opioids per Capita 0.46 0.96 0.87 0.45 -0.10 0.34

(0.75) (0.81) (0.63) (0.37) (0.76) (0.69)
[ tF 0.05 se] [1.0875] [1.1837] [.9244] [.5461] [1.102] [1.0074]
{AR p-value} {.5454} {.2558} {.1247} {.1959} {.8938} {.6235}

R-squared 0.64 0.90 0.57 0.29 0.30 0.60
Effective F-Stat 13.49 13.49 13.49 13.49 13.49 13.49
Effect Size .5 .98 .85 .37 -.08 .32
A. OLS
Opioids per Capita 0.10 0.11 -0.12 -0.05 -0.00 0.10

(0.26) (0.19) (0.17) (0.16) (0.29) (0.21)

R-squared 0.83 0.93 0.79 0.68 0.55 0.72
Effect Size .11 .11 -.12 -.04 0 .1
Observations 741 741 741 741 741 741
Outcome Mean 61.18 64.18 66.76 79.56 86.93 67.97

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls
for contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed
effects. Effect size indicates the percent change in the dependent variable relative to its mean when opioids per capita
increase from the 25th to the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and
Pflueger (2013). Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR
p-value is the Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level
from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Table A3. Physical Fitness Grade 9
(1) (2) (3) (4) (5) (6)

VARIABLES Aerobic Capacity Body Comp Upper Body Ab Strength Trunk Ext Flexibility

A. Instrumental Variables
Opioids per Capita -2.20*** 0.88 -0.66 -0.96 -0.08 -1.50

(0.83) (1.11) (0.86) (0.70) (1.12) (0.97)
[ tF 0.05 se] [1.2525] [1.6794] [1.3032] [1.0587] [1.6954] [1.4657]
{AR p-value} {.009} {.4272} {.4748} {.2118} {.9417} {.1636}

R-squared 0.81 0.73 0.75 0.54 0.63 0.78
Effective F-Stat 12.23 12.23 12.23 12.23 12.23 12.23
Effect Size -2.55 .87 -.61 -.75 -.06 -1.3
B. OLS
Opioids per Capita -1.19*** -0.15 -0.60 -0.75** -0.40 -1.10**

(0.40) (0.17) (0.38) (0.32) (0.36) (0.47)

R-squared 0.90 0.85 0.80 0.73 0.69 0.81
Effect Size -1.39 -.15 -.55 -.59 -.3 -.95
Observations 741 741 741 741 741 741
Outcome Mean 56.64 66.33 71.15 83.58 87.06 75.82

Standard errors clustered at the county level. Regressions weighted by number of students. Effect size indicates the
percent change in the dependent variable relative to its mean when opioids per capita increase from the 25th to the 75th
percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). Effective F-stat
is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira,
and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Table A4: First Stage, Cross-Sectional Cancer Instrument
(1) (2) (3) (4) (5) (6) (7)

VARIABLES ∆ Opioids/Capita ∆ Op./Cap. ∆ Op./Cap. ∆ Op./Cap. ∆ Op./Cap. ∆ Op./Cap. ∆ Op./Cap.

Cancer Mort. 0.0178*** 0.0176*** 0.0104*** 0.0103*** 0.0245*** 0.0261*** 0.0248***
(0.00475) (0.00466) (0.00302) (0.00301) (0.00555) (0.00593) (0.00606)

Constant -1.628 -1.705 -0.550 -0.547 -3.079* -4.060** -1.901
(1.442) (1.432) (1.037) (1.036) (1.782) (1.974) (1.914)

Observations 583 583 583 583 1,060 848 954
R-squared 0.347 0.350 0.311 0.311 0.327 0.347 0.321
Effective F-stat 13.96 14.34 11.84 11.81 19.40 19.46 16.74
Sample Math G2 Math G6 CAHSEE Math CAHSEE ELA Dropouts SAT Takers Fitness G7
Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include year fixed effects
and a set of control variables including changes in SEERS demographic variables and county characteristics from the 2000 Census.
Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013).

*** p<0.01, ** p<0.05, * p<0.1
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Table A5: STAR Exam Math, Cross-Sectional Cancer Instrument
(1) (2) (3) (4) (5)

VARIABLES G2 G3 G4 G5 G6

A. Instrumental Variables
∆ Opioids Per Capita -1.64 -2.27* -3.37** -4.58** -2.53***

(1.14) (1.23) (1.54) (2.08) (0.94)
[ tF 0.05 se] [1.7007] [1.8279] [2.2829] [3.0684] [1.3837]
{AR p-value} {.1769} {.0415} {.0009} {.0018} {.002}

R-squared 0.81 0.95 0.95 0.94 0.93
Effective F-Stat 13.43 13.43 13.61 13.72 13.81
Effect Size -1.25 -1.12 -1.94 -2.38 -2.7

B. OLS

∆ Opioids Per Capita -0.644* -0.719** -0.773* -0.979* -0.794**
(0.328) (0.331) (0.421) (0.542) (0.366)

R-squared 0.817 0.954 0.962 0.955 0.937
Effect Size -.49 -.35 -.45 -.51 -.85
Observations 583 583 583 583 583
Mean Score Change 29.74 46.23 39.38 43.64 21.2

Standard errors clustered at the county level. Regressions weighted by number of students. Outcomes are also expressed in terms of
changes. All regressions include year fixed effects and a set of control variables including changes in SEERS demographic variables
and county characteristics from the 2000 Census. Effect size indicates the percent change in the dependent variable relative to its
mean when changes in opioids per capita since the base year increase from the 25th to the 75th percentile. The AR p-value is the
Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary,
Moreira, and Porter (2022). STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1
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Table A6: STAR Exam ELA, Cross-Sectional Cancer Instrument
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

A. IV
∆ Opioids Per Capita -2.01* -0.78 -2.36*** -1.89** -1.30** -1.21** -1.72** -1.54* -2.27** -1.44*

(1.04) (0.96) (0.85) (0.81) (0.63) (0.58) (0.73) (0.79) (1.05) (0.78)
[ tF 0.05 se] [1.5407] [1.4309] [1.2553] [1.2] [.9264] [.8517] [1.0754] [1.1548] [1.5435] [1.1545]
{AR p-value} {.0243} {.4178} {.0017} {.0055} {.0656} {.0938} {.0068} {.0125} {.0007} {.0211}

R-squared 0.91 0.90 0.96 0.95 0.96 0.97 0.96 0.94 0.91 0.89
Effective F-Stat 13.43 13.43 13.63 13.73 13.82 13.75 13.64 13.89 13.8 13.81
Effect Size -1.95 -1.62 -2.14 -1.95 -1.26 -1.09 -1.79 -1.34 -3.57 -2.75

B. OLS

∆ Opioids Per Capita -0.361 -0.197 -0.623*** -0.212 -0.360 -0.590*** -0.266 -0.187 -0.323 -0.274
(0.268) (0.272) (0.203) (0.185) (0.252) (0.188) (0.201) (0.181) (0.252) (0.234)

R-squared 0.920 0.900 0.965 0.963 0.962 0.974 0.968 0.952 0.934 0.902
Effect Size -.35 -.41 -.56 -.22 -.35 -.53 -.28 -.16 -.51 -.52
Observations 583 583 583 583 583 583 583 583 583 583
Mean Score Change 23.32 10.88 25.04 21.94 23.43 25.33 21.82 25.95 14.4 11.88

Standard errors clustered at the county level. Regressions weighted by number of students. Outcomes are also expressed in terms of
changes. All regressions include year fixed effects and a set of control variables including changes in SEERS demographic variables and
county characteristics from the 2000 Census. Effect size indicates the percent change in the dependent variable relative to its mean when
changes in opioids per capita since the base year increase from the 25th to the 75th percentile. The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).
STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1
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Table A7: CAHSEE, Cross-Sectional Cancer Instrument
(1) (2) (3) (4)

VARIABLES ∆ Math Scores ∆ ELA Scores ∆ Math Pass Rate ∆ ELA Pass Rate

A. Instrumental Variables
∆ Opioids Per Capita -2.02* -1.93** -2.92** -1.18

(1.12) (0.84) (1.20) (0.96)
[ tF 0.05 se] [1.7194] [1.2886] [1.8481] [1.461]
{AR p-value} {.017} {.0043} {.0007} {.1109}

R-squared 0.91 0.92 0.93 0.88
Effective F-Stat 12.44 12.6 12.44 12.6
Effect Size -3.17 -1.74 -2.61 -2.27

B. OLS

∆ Opioids Per Capita -0.119 -0.216 -0.279 0.124
(0.213) (0.151) (0.189) (0.228)

R-squared 0.934 0.940 0.955 0.901
Effect Size -.19 -.2 -.25 .24
Observations 742 742 742 742
Outcome Mean 16.63 28.93 29.18 13.65

Standard errors clustered at the county level. Regressions weighted by number of students. Outcomes are also expressed in terms of
changes. All regressions include year fixed effects and a set of control variables including changes in SEERS demographic variables and
county characteristics from the 2000 Census. Effect size indicates the percent change in the dependent variable relative to its mean when
changes in opioids per capita since the base year increase from the 25th to the 75th percentile. The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).
CAHSEE test scores are available starting in 2001.

*** p<0.01, ** p<0.05, * p<0.1
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Table A8: Dropout and SAT Take-Up, Cross-Sectional Cancer Instrument
(1) (2) (3) (4) (5) (6)

VARIABLES ∆ Dropout G9 ∆ Dropout G10 ∆ Dropout G11 ∆ Dropout G12 ∆ Dropout ∆ SAT Takers

A. Instrumental Variables

∆ Opioids Per Capita 0.0014 0.0006 0.0004 0.0047 0.0019 -0.01
(0.0011) (0.0010) (0.0014) (0.0077) (0.0024) (0.01)

[ tF 0.05 se] [.0015] [.0013] [.0019] [.0101] [.0032] [.0072]
{AR p-value} {.1846} {.5742} {.8001} {.5580} {.4327} {.3392}

R-squared 0.5716 0.4752 0.4405 0.3491 0.3636 0.57
Effective F-Stat 19.78 19.85 19.76 20.52 19.98 18.25
Effect Size -4.08 -2.5 -5.69 4.43 20.14 -4.72

B. OLS

∆ Opioids Per Capita 0.000386 4.78e-05 0.000524 0.00628 0.00188 -0.00183
(0.000366) (0.000409) (0.000584) (0.00534) (0.00167) (0.00160)

R-squared 0.583 0.479 0.441 0.351 0.364 0.580
Effect Size -1.09 -.21 -8.12 5.89 19.39 -1.66
Observations 954 954 954 954 954 848
Outcome Mean -.011 -.007 -.002 .033 .003 .034

Standard errors clustered at the county level. Regressions weighted by number of students. Outcomes are also expressed in terms of
changes. All regressions include year fixed effects and a set of control variables including changes in SEERS demographic variables and
county characteristics from the 2000 Census. Effect size indicates the percent change in the dependent variable relative to its mean when
changes in opioids per capita since the base year increase from the 25th to the 75th percentile. The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Table A9: Physical Fitness Grade 7, Cross-Sectional Cancer Instrument
(1) (2) (3) (4) (5) (6)

VARIABLES ∆ Aerobic Capacity ∆ Body Comp ∆ Upper Body ∆ Ab Strength ∆ Trunk Ext ∆ Flexibility

A. Instrumental Variables
∆ Opioids Per Capita -0.88 0.38 0.12 -0.88 1.49 0.06

(0.90) (1.01) (0.96) (0.63) (1.18) (1.32)
[ tF 0.05 se] [1.1963] [1.3455] [1.2736] [.8356] [1.572] [1.7579]
{AR p-value} {.2902} {.7065} {.9038} {.118} {.2986} {.9645}

R-squared 0.37 0.59 0.31 0.13 0.25 0.33
Effective F-Stat 18.81 18.81 18.81 18.81 18.81 18.81
Effect Size -5.61 -6.11 .34 -9.88 13.29 .19

B. OLS

∆ Opioids Per Capita -0.00971 0.284 0.918 0.615 1.462* 0.764
(0.443) (0.521) (0.582) (0.570) (0.777) (0.587)

R-squared 0.398 0.591 0.327 0.237 0.250 0.342
Effect Size -.06 -4.55 2.65 6.92 13.04 2.46
Observations 795 795 795 795 795 795
Mean Score Change 4.786 -1.916 10.621 2.725 3.437 9.51

Standard errors clustered at the county level. Regressions weighted by number of students. Outcomes are also expressed in terms of
changes. All regressions include year fixed effects and a set of control variables including changes in SEERS demographic variables and
county characteristics from the 2000 Census. Effect size indicates the percent change in the dependent variable relative to its mean when
changes in opioids per capita since the base year increase from the 25th to the 75th percentile. The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1

56



Table A10: First Stage, Opioid Hospitalizations
(1) (2) (3) (4) (5) (6)

VARIABLES Opioid Hosp Opioid Hosp Opioid Hosp Opioid Hosp Opioid Hosp Opioid Hosp

Marketing 92.37*** 91.31*** 101.46*** 97.95*** 106.90*** 102.48***
(28.33) (28.50) (23.52) (23.26) (23.38) (23.27)

Constant 9.09 9.03 5.41 5.08 6.47 5.93
(6.03) (6.03) (5.15) (5.03) (4.97) (4.97)

Observations 660 660 715 715 715 715
R-squared 0.84 0.84 0.83 0.84 0.84 0.84
Effective F-stat 10.69 10.32 18.68 17.89 21.03 19.69
Instrument Mean .0686 .0687 .0682 .0688 .0670 .0688
Sample STAR Math G2 STAR ELA G2 CAHSEE Math CAHSEE ELA G9 Dropouts SAT

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effective
F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013).

*** p<0.01, ** p<0.05, * p<0.1
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Table A11: STAR Exam Math, Opioid Hospitalizations
(1) (2) (3) (4) (5)

VARIABLES G2 G3 G4 G5 G6
A. Instrumental Variables
Opioid Hospitalizations -0.85** -1.10*** -1.18*** -1.44*** -1.35***

(0.36) (0.42) (0.35) (0.42) (0.36)
[ tF 0.05 se] [.5793] [.6664] [.5481] [.6535] [.5481]
{AR p-value} {.0392} {.013} {.0012} {.0019} {.0002}

R-squared 0.92 0.97 0.97 0.97 0.93
Effective F-Stat 10.69 10.99 11.04 11.46 11.95
Effect Size -1.18 -1.51 -1.64 -2.02 -1.98
B.OLS
Opioid Hospitalizations -0.43*** -0.39*** -0.41*** -0.48*** -0.37***

(0.10) (0.12) (0.09) (0.11) (0.08)

R-squared 0.96 0.98 0.98 0.98 0.98
Effect Size -.59 -.54 -.56 -.68 -.54
Observations 660 660 660 660 660
Outcome Mean 369.86 373.57 368.28 362.16 347.55

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions
include controls for contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and
county and year fixed effects. Effect size indicates the percent change in the dependent variable relative to its
mean when opioid hospitalizations increase from the 25th to the 75th percentile. Effective F-stat is the effective
first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is the Anderson-Rubin p-value
and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira,
and Porter (2022). STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1
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Table A12: STAR Exam ELA, Opioid Hospitalizations
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

A. Instrumental
Variables
Opioid Hosp./Cap. -1.25*** -1.17*** -1.15*** -1.07*** -1.10*** -0.91*** -0.92*** -0.61** -0.73*** -0.54**

(0.33) (0.34) (0.29) (0.26) (0.26) (0.24) (0.27) (0.26) (0.27) (0.27)
[ tF 0.05 se] [.5336] [.5426] [.4621] [.4104] [.398] [.3777] [.4189] [.4082] [.4326] [.4417]
{AR p-value} {.0006} {.0004} {<.0001} {<.0001} {<.0001} {.0001} {.0001} {.0066} {.0021} {.0205}

R-squared 0.94 0.90 0.96 0.95 0.96 0.97 0.97 0.97 0.94 0.92
Effective F-Stat 10.32 10.85 10.46 11.35 11.86 10.9 11.41 11.13 10.48 10.01
Effect Size -1.84 -1.79 -1.64 -1.57 -1.63 -1.35 -1.37 -.9 -1.11 -.84
B.OLS
Opioid Hosp./Cap. -0.42*** -0.30*** -0.30*** -0.26*** -0.28*** -0.20*** -0.21*** -0.10** -0.13*** -0.02

(0.11) (0.09) (0.07) (0.06) (0.06) (0.05) (0.05) (0.04) (0.05) (0.05)

R-squared 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97
Effect Size -.62 -.46 -.43 -.39 -.41 -.3 -.31 -.15 -.19 -.03
Observations 660 660 660 660 660 660 660 660 660 660
Outcome Mean 345.56 333.57 355.79 347.69 344.44 345.92 343.19 345.26 335.7 330.86

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effect size
indicates the percent change in the dependent variable relative to its mean when opioid hospitalizations increase from the 25th to
the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is
the Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary,
Moreira, and Porter (2022). STAR test scores are available between 2002 and 2013.

*** p<0.01, ** p<0.05, * p<0.1

59



Table A13: CAHSEE, Opioid Hospitalizations
(1) (2) (3) (4)

VARIABLES Math Scores Math Pass Rate ELA Scores ELA Pass Rate

A. Instrumental Variables
Opioid Hospitalizations -0.81*** -0.87*** -0.616*** -0.71***

(0.20) (0.25) (0.173) (0.20)
[ tF 0.05 se] [.2574] [.3247] [.2295] [.2615]
{AR p-value} {.0004} {.0027} {.0013} {.0033}

R-squared 0.95 0.97 0.972 0.90
Effective F-Stat 18.68 18.68 17.89 17.89
Effect Size -1.08 -6.22 -.84 -4.73
B. OLS
Opioid Hospitalizations -0.22*** -0.26** -0.19*** -0.22**

(0.07) (0.11) (0.06) (0.09)

R-squared 0.97 0.98 0.98 0.95
Effect Size -.3 -1.84 -.26 -1.44
Observations 715 715 715 715
Outcome Mean 378.28 70.66 374.62 76.17

Standard errors clustered at the county level. Regressions weighted by number of students. All
regressions include controls for contemporaneous cancer rates, the percent of the population over
65 in FFS Medicare, and county and year fixed effects. Effect size indicates the percent change
in the dependent variable relative to its mean when opioid hospitalizations increase from the 25th
to the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea
and Pflueger (2013). The AR p-value is the Anderson-Rubin p-value and the [tF 0.05 se] is the
tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter
(2022). CAHSEE test scores are available starting in 2001.

*** p<0.01, ** p<0.05, * p<0.1
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Table A14: Dropout and SAT Take-Up, Opioid Hospitalizations
(1) (2) (3) (4) (5) (6)

VARIABLES Dropouts G9 Dropouts G10 Dropouts G11 Dropouts G12 Dropouts Total SAT Take-Up

A. Instrumental Variables
Opioid Hospitalizations 0.0016*** 0.0012** 0.0012* 0.0010 0.0015 -0.0025**

(0.0006) (0.0006) (0.0006) (0.0020) (0.0009) (0.0012)
[ tF 0.05 se] [.0008] [.0007] [.0008] [.0025] [.0012] [.0016]
{AR p-value} {.0054} {.0225} {.0539} {.6117} {.111} {.0297}

R-squared 0.0630 0.1736 0.2806 0.5295 0.3934 0.5927
Effective F-Stat 21.03 21.01 20.67 19.72 20.83 19.69
Effect Size 41.07 30.73 29.93 25.67 18.69 -3.08
B. OLS
Opioid Hospitalizations 0.0001 -0.0000 0.0001 0.0005 0.0003 -0.0003

(0.0001) (0.0001) (0.0002) (0.0009) (0.0004) (0.0004)

R-squared 0.6281 0.6872 0.6356 0.7897 0.7360 0.9541
Effect Size 2.34 -.22 3.64 11.49 3.43 -.4
Observations 715 715 715 715 715 715
Outcome Mean .02 .02 .02 .02 .04 .41

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for contempo-
raneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effect size indicates the
percent change in the dependent variable relative to its mean when opioid hospitalizations increase from the 25th to the 75th percentile.
Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The AR p-value is the Anderson-Rubin
p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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Table A15: Physical Fitness Grade 7, Opioid Hospitalizations
(1) (2) (3) (4) (5) (6)

VARIABLES Aerobic Capacity Body Comp Upper Body Ab Strength Trunk Ext Flexibility

A. Instrumental Variables
Opioid Hospitalizations -0.24* 0.10 -0.16 -0.19** -0.10 -0.31**

(0.14) (0.10) (0.11) (0.10) (0.17) (0.15)
[ tF 0.05 se] [.181] [.1332] [.1439] [.1227] [.2207] [.1879]
{AR p-value} {.0889} {.3146} {.1563} {.0872} {.5651} {.0728}

R-squared 0.58 0.92 0.67 0.28 0.26 0.70
Effective F-Stat 20.11 20.11 20.11 20.11 20.11 20.11
Effect Size -1.96 .82 -1.17 -1.14 -.59 -2.07
B.OLS
Opioid Hospitalizations -0.01 -0.03 -0.05 -0.05 -0.04 -0.09

(0.05) (0.03) (0.04) (0.05) (0.07) (0.06)

R-squared 0.88 0.94 0.83 0.74 0.60 0.79
Effect Size -.09 -.21 -.39 -.33 -.21 -.59
Observations 715 715 715 715 715 715
Outcome Mean 61.96 64.74 69.16 83.73 89.12 75

Standard errors clustered at the county level. Regressions weighted by number of students. All regressions include controls for
contemporaneous cancer rates, the percent of the population over 65 in FFS Medicare, and county and year fixed effects. Effect
size indicates the percent change in the dependent variable relative to its mean when opioid hospitalizations increase from the
25th to the 75th percentile. Effective F-stat is the effective first-stage F statistic as in Montiel Olea and Pflueger (2013). The
AR p-value is the Anderson-Rubin p-value and the [tF 0.05 se] is the tF-adjusted standard error for the 5% significance level
from Lee, McCrary, Moreira, and Porter (2022).

*** p<0.01, ** p<0.05, * p<0.1
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